Inhaltsverzeichnis

Sinus- und Kosinussatz im allgemeinen Dreieck

Sinussatz

Den Sinussatz kann man im allgemeinen Dreieck anwenden, dass bedeutet, das Dreieck muss nicht unbedingt rechtwinklig sein, wie bei den trigonometrischen Funktionen Sinus, Kosinus und Tangens.

$\frac{a}{sin(α)}$=$\frac{b}{sin(β)}$=$\frac{c}{sin(γ)}$

Für jedes Dreieck gilt, dass die Quotienten aus der Seitenlänge und dem Sinuswert des gegenüberliegenden Winkels jeweils denselben Wert haben.

Den Sinussatz benutzt man, wenn …

Vorgehensweise

  1. Überflüssigen Teil der Formel weglassen
  2. Nach gesuchter Größe umstellen
  3. Werte einsetzen
  4. Ausrechnen

Beispiel

Im Dreieck ABC sind gegeben: β=48°; γ=75°; c=6cm. Gesucht wird die Länge der Seite b.

  1. $\frac{b}{sin(β)}$=$\frac{c}{sin(γ)}$
  2. b=$\frac{c∗sin(β)}{sin(γ)}$
  3. b=$\frac{6∗0,7431}{0,9659}$
  4. b=4,62cm

Übungsaufgaben

1. Im Dreieck ABC sind gegeben: a=5cm; c=7cm; γ=50°. Gesucht wird die Größe des Winkels α.

2. Im Dreieck ABC sind gegeben: a=4cm; α=60°; β=50°. Gesucht wird die Länge der Seite b.

3. Im Dreieck ABC sind gegeben: a=8cm; b=5cm; α=80°. Gesucht wird die Größe des Winkels β.

Lösungen

Zum Anzeigen hier klicken ⇲

Zum Verstecken hier klicken ⇱

1. α=33°

2. b≈3,54cm

3. β≈37,99°

Kosinussatz

Den Kosinussatz kann man, genauso wie den Sinussatz, in jedem beliebigen Dreieck anwenden.

$a^2$=$b^2$+$c^2$-2$\cdot$b$\cdot$c$\cdot$cos(α)

$b^2$=$a^2$+$c^2$-2$\cdot$a$\cdot$c$\cdot$cos(β)

$c^2$=$a^2$+$b^2$-2$\cdot$a$\cdot$b$\cdot$cos(γ)

Für jedes Dreieck gilt, dass das Quadrat einer Dreiecksseite gleich ist der Summe der Quadrate der anderen Seiten, vermindert um das doppelte Produkt aus diesen Seiten und dem Kosinus des von ihnen eingeschlossenen Winkels.

Den Kosinussatz benutzt man, wenn …

Vorgehensweise

  1. Mit gegebenen Größen passende Formel auswählen
  2. Nach gesuchter Größe umstellen
  3. Werte einsetzen
  4. Ausrechnen

Beispiel

Im Dreieck ABC sind gegeben: b=5cm; c=7cm; α=57,1°. Gesucht wird die Länge der Seite a.

  1. $a^2$=$b^2$+$c^2$-2$\cdot$b$\cdot$c$\cdot$cos(α)
  2. a=$\sqrt{b^2+c^2-2∗b∗c∗cos(α)}$
  3. a=$\sqrt{25+49-70∗0,543}$ a=$\sqrt{35,99}$
  4. a≈6cm

Übungsaufgaben

1. Im Dreieck ABC sind gegeben: a=2cm; b=3cm; γ=100°. Gesucht wird die Länge der Seite c.

2. Im Dreieck ABC sind gegeben: b=4cm; c=6cm; α=60°. Gesucht wird die Länge der Seite a.

3. Im Dreieck ABC sind gegeben: a=5cm; b=3cm c=7cm. Gesucht wird die Größe des Winkels α.

Lösungen

Zum Anzeigen hier klicken ⇲

Zum Verstecken hier klicken ⇱

1. c≈3,88cm

2. a≈5,29cm

3. α≈38,21°